Molecular characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency in patients of Chinese descent and identification of new base substitutions in the human G6PD gene.
نویسندگان
چکیده
The underlying DNA changes associated with glucose-6-phosphate dehydrogenase (G6PD)-deficient Asians have not been extensively investigated. To fill this gap, we sequenced the G6PD gene of 43 G6PD-deficient Chinese whose G6PD was well characterized biochemically. DNA samples were obtained from peripheral blood of these individuals for sequencing using a direct polymerase chain reaction (PCR) sequencing procedure. From these 43 samples, we have identified five different types of nucleotide substitutions in the G6PD gene: at cDNA 1388 from G to A (Arg to His); at cDNA 1376 from G to T (Arg to Leu); at cDNA 1024 from C to T (Leu to Phe); at cDNA 392 from G to T (Gly to Val); at cDNA 95 from A to G (His to Arg). These five nucleotide substitutions account for over 83% of our 43 G6PD-deficient samples and these substitutions have not been reported in non-Asians. The substitutions found at cDNA 392 and cDNA 1024 are new findings. The substitutions at cDNA 1376 and 1388 account for over 50% of the 43 samples examined indicating a high prevalence of these two alleles among G6PD-deficient Chinese. Our findings add support to the notion that diverse point mutations may account largely for much of the phenotypic heterogeneity of G6PD deficiency.
منابع مشابه
Molecular Characterization of Cosenza Mutation among Patients with Glucose-6-Phosphate Dehydrogenase Deficiency in Khuzestan Province, Southwest Iran
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common hereditary enzymatic disorders in human, increases the vulnerability of erythrocytes to oxidative stress. It is also characterized by remarkable molecular and biochemical heterogeneity. According to previous investigations, G6PD Cosenza (G1376C) is a common G6PD mutation in some parts of Iran. Therefore in the present...
متن کاملMolecular Identification of the Most Prevalent Mutation of Glucose-6-Phosphate Dehydrogenase Gene in Deficient Patients in Sistan and Balochestan Province of Iran
Glucose-6-phosphate dehydrogenase (G6PD) in humans is an X-chromosome-linked disorder and housekeeping enzyme, vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho gluconate in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cell...
متن کاملMOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE
Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...
متن کاملMolecular Identification of the Most Prevalent Mutations of Glucose-6-Posphate Dehydrogenase (G6PD) Gene in Deficient Patients in Khorasan Province of Iran
Glucose-6-phosphate dehydrogenase (G6PD) enzyme catalyses the first step in pentose phosphate pathway (conversion of glucose-6-phosphat to 6-phospho gluconat) which provides cells with pentoses and reduction power in the form of NADPH. In the present study we have analyzed the G6PD gene mutations in 76 patients with a history of favism in Khorasan province in Iran. DNA samples were analyzed for...
متن کاملMolecular Identification of the Most Prevalent Mutations of Glucose-6-Phosphate Dehydrogenase (G6PD) in Fars and Isfahan of Iran
Glucose-6-phosphate dehydrogenase (G6PD) in humans is in X-linked disorder, housekeeping enzyme and vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho Gluconat in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cells against ox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 81 8 شماره
صفحات -
تاریخ انتشار 1993